
Math Circle

Expanding Polynomials

Polynomials are just sums of terms with variables raised to powers. The simplest building block is multiplying binomials.

FOIL stands for:

- F: First terms
- O: Outer terms
- I: Inner terms
- L: Last terms

Calcworkshop.com

Example 1: (x + 3)(x + 5)

Example 2: (2x - 4)(x + 7)

Quadratic Formula

Every quadratic equation can be solved using the quadratic formula:

For $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The part under the square root is the **discriminant** (b^2 - 4ac).

Example 1: Solve $2x^2 + 3x - 5 = 0$.

Example 2: Solve $x^2 - 6x + 10 = 0$.

3. Polynomial Division

Polynomial long division works like normal long division with numbers.

Steps:

- 1. Divide the first term of the dividend by the first term of the divisor.
- 2. Multiply the divisor by that term.
- 3. Subtract this from the dividend.
- 4. Repeat with the new polynomial until the degree of the remainder is less than the degree of the divisor.

$$\begin{array}{r}
2x^{2} + 5x + 4 \\
x - 2 \overline{\smash)2x^{3} + x^{2} - 6x - 8} \\
- \underline{(2x^{3} - 4x^{2})} \\
0 + 5x^{2} - 6x \\
\underline{- (5x^{2} - 10x)} \\
0 + 4x - 8 \\
\underline{(4x - 8)} \\
0 + 0
\end{array}$$

Example 1: Divide $2x^3 + 3x^2 - 5x + 6$ by x - 2.

Example 2: Divide $x^3 - 4x^2 + 5x - 2$ by x - 1.

4. Remainder Theorem

The Remainder Theorem says:

If you divide f(x) by (x - r), the remainder is just f(r).

Example 1: $f(x) = x^3 - 2x^2 + 3x - 7$. Find remainder when dividing by (x - 2).

Example 2: $f(x) = 2x^4 - 5x^2 + 4x + 1$. Find remainder when dividing by (x + 3).

8 Challenge Problems

1. Expand (3x - 2)(x + 7) using FOIL.

- 2. Solve $3x^2 12x + 9 = 0$ using the quadratic formula.
- 3. Solve $5x^2 + 2x + 1 = 0$ using the quadratic formula.
- 4. Divide $3x^3 5x^2 + 6x 4$ by (x 2).
- 5. Divide $x^4 + 2x^3 x^2 + 5$ by (x + 1).
- 6. Use the Remainder Theorem to find the remainder when $f(x) = x^3 + 4x^2 x + 7$ is divided by (x 3).
- 7. Use the Remainder Theorem to find the remainder when $f(x) = 2x^4 3x^2 + 1$ is divided by (x 2).
- 8. A polynomial f(x) leaves a remainder of 5 when divided by (x 1) and a remainder of -3 when divided by (x + 2). Find f(1) and f(-2).