# **Math Circle**

# **Sum and Product of Roots (Vieta's Formulas)**

## What are Vieta's Formulas?

Vieta's formulas connect the **coefficients** of a polynomial with the **sum and product of its roots**.

For a quadratic equation  $ax^2 + bx + c = 0$ , the two roots are  $r_1$  and  $r_2$ , and:

- Sum of roots:  $r_1 + r_2 = -b / a$
- Product of roots:  $r_1 \times r_2 = c / a$

# Vieta's Formula

$$F(x) = ax^2 + bx + c$$
roots p and q

$$p+q = \frac{-b}{a} \longrightarrow \text{Sum of the roots}$$

$$p,q = \frac{c}{a} \longrightarrow \text{product of the roots}$$

Vieto's Energia



These relationships let us find the roots' sum and product **without solving the equation** directly.

#### **Example:**

$$x^2 + 5x + 6 = 0$$
  
Sum = -5 / 1 = -5

Product = 
$$6/1 = 6$$

The roots (-2, -3) check out because (-2) + (-3) = -5 and (-2)(-3) = 6.

## Warmup

- 1. Find the roots of  $x^2 3x + 2 = 0$ .
- 2. Find the sum and product of the roots of  $x^2 + 7x + 12 = 0$ .
- 3. For  $2x^2 4x + 1 = 0$ , what is the sum and product of the roots?

#### **Practice Problem 1**

Find the sum and product of the roots of  $3x^2 + 2x - 1 = 0$ .

## **Explanation:**

Sum = -b / a = -2 / 3

Product = c / a = -1 / 3

**Answer:** Sum = -2/3, Product = -1/3

## **Practice Problem 2**

The sum of two roots is 8 and their product is 15. Find the quadratic equation.

#### **Explanation:**

We know:

Sum =  $8 \rightarrow -b / a = 8$ 

Product =  $15 \rightarrow c / a = 15$ 

Let a = 1 for simplicity.

Equation  $\rightarrow$  x<sup>2</sup> - 8x + 15 = 0

**Answer:**  $x^2 - 8x + 15 = 0$ 

#### **Practice Problem 3**

If one root of  $x^2$  - kx + 6 = 0 is 2, find k.

#### **Explanation:**

Let the other root be r.

Product =  $2r = 6 \rightarrow r = 3$ 

Sum = 2 + 3 = 5

## **Practice Problem 4**

The roots of a quadratic differ by 5 and have a product of 36. Find the equation.

#### **Explanation:**

Let roots be r and r + 5.

Product =  $r(r + 5) = 36 \rightarrow r^2 + 5r - 36 = 0$ 

Solve:  $r = (-5 \pm \sqrt{25 + 144}) / 2 = (-5 \pm 13) / 2 \rightarrow r = 4 \text{ or } -9$ 

If r = 4, roots are 4 and 9.

Sum = 13, Product = 36

Equation  $\rightarrow$  x<sup>2</sup> - 13x + 36 = 0

**Answer:**  $x^2 - 13x + 36 = 0$ 

#### **Problems**

- 1. Find the sum and product of the roots of  $x^2$  6x + 8 = 0.
- 2. The roots of a quadratic are 2 and 5. Write the quadratic equation.
- 3. The sum of two roots is -4, and their product is 1. Find the equation.
- 4. If the roots of a quadratic are 3 and -7, find the equation.
- 5. The product of two roots is 10, and their sum is 9. Find the equation.
- 6. One root of  $x^2 px + 12 = 0$  is 3. Find p.
- 7. The roots of a quadratic are reciprocals of each other. If the equation is  $4x^2 + bx + 9 = 0$ , find b.
- 8. If the roots of a quadratic differ by 5 and their product is 36, find the equation.

# **Solutions**

2. 
$$x^2 - 7x + 10 = 0$$

3. 
$$x^2 + 4x + 1 = 0$$

4. 
$$x^2 + 4x - 21 = 0$$

5. 
$$x^2 - 9x + 10 = 0$$

8. 
$$x^2 - 11x + 36 = 0$$