Math Circle Basic Logarithms

Exponential Functions

Examples of exponential equations:

$$2^3 = 8$$

$$10^2 = 100$$

$$5^{-1} = 1/5$$

When we have exponential equations, we often need to find the exponent. For example:

- $2^x = 8 \rightarrow x = 3$
- $10^{x} = 100 \rightarrow x = 2$
- $5^{x} = 1/5 \rightarrow x = -1$

Logarithm Definition:

Definition: We say $log_b(a) = x$ if $b^x = a$. This is read as "log base b of a equals x."

Examples of Logarithmic Equations:

- $\log_2(8) = 3 \text{ because } 2^3 = 8$
- $\log_{10}(100) = 2$ because $10^2 = 100$
- $\log_5(1/5) = -1$ because $5^{-1} = 1/5$
- $log_3(1) = 0 because 3^0 = 1$
- $\log_4(2) = 1/2$ because $4^{(1/2)} = \sqrt{4} = 2$

Converting Between Forms Example: Convert 3⁴ = 81 to logarithmic form

Answer: $log_3(81) = 4$

Exercise 1 - Conversion Practice:

a) Convert 2⁵ = 32 to logarithmic form: _____

b) Convert 10⁻² = 0.01 to logarithmic form: _____

c) Convert $log_7(49) = 2$ to exponential form: _____

d) Convert $log_6(1/6) = -1$ to exponential form:

Exercise 2 - Evaluation Practice:

Common and Natural Logarithms

• Common logarithm: $log(x) = log_{10}(x)$

• Natural logarithm: $ln(x) = log_e(x)$ where $e \approx 2.718$

Exercise 3 - Common and Natural Logs:

Logarithm Properties Product Rule: $log_b(xy) = log_b(x) + log_b(y)$

Quotient Rule: $\log_b(x/y) = \log_b(x) - \log_b(y)$

Power Rule: $\log_b(x^n) = n \cdot \log_b(x)$

Example: Simplify $\log_2(8 \times 4) \log_2(8 \times 4) = \log_2(8) + \log_2(4) = 3 + 2 = 5$

Exercise 4 - Properties Practice:

c)
$$log_2(16^2) =$$

d)
$$\log_{10}(1000 \times 10) =$$

Solving Exponential Equations with Logarithms Example:

Solve $2^x = 10$

Take log of both sides:

$$x \cdot \log(2) = \log(10)$$

So
$$x = log(10)/log(2)$$

Exercise 5 - Exponential Equations:

c)
$$2^x = 64$$
, so $x = ____$

Practice Problems

- 1. Convert $4^3 = 64$ to logarithmic form.
- 2. Evaluate log₆(36).
- 3. Simplify $log_2(32) + log_2(2)$.
- 4. Solve $log_3(x) = 2$.
- 5. Simplify $log_5(25 \times 5)$.
- 6. Solve $3^x = 81$.
- 7. Evaluate $log_{10}(100) log_{10}(10)$.
- 8. Solve $log_2(x) + log_2(4) = 5$.

Answer Key

- 1. Convert $4^3 = 64$ to logarithmic form: $log_4(64) = 3$
- 2. Evaluate log₆(36): **2**
- 3. Simplify $log_2(32) + log_2(2)$: **6**
- 4. Solve $log_3(x) = 2$: **x = 9**
- 5. Simplify log₅(25 × 5): **3**
- 6. Solve $3^x = 81$: x = 4
- 7. Evaluate log₁₀(100) log₁₀(10): **1**
- 8. Solve $log_2(x) + log_2(4) = 5$: **x = 8**