Math Circle

Basic Modular Arithmetic

Integers

Examples of integers: -3, -1, 0, 1, 2, 15, 100

When we divide integers, we often get remainders. For example:

- $17 \div 5 = 3$ remainder 2
- 23 ÷ 7 = 3 remainder 2
- 100 ÷ 12 = 8 remainder 4

Modular Arithmetic Definition

Definition: We say $a \equiv b \pmod{n}$ if a and b have the same remainder when divided by n.

This is read as "a is congruent to b modulo n."

Examples of Modular Congruences:

- $17 \equiv 2 \pmod{5}$ because $17 = 5 \times 3 + 2$ and $2 = 5 \times 0 + 2$
- $23 \equiv 2 \pmod{7}$ because $23 = 7 \times 3 + 2$ and $2 = 7 \times 0 + 2$
- $100 \equiv 4 \pmod{12}$ because $100 = 12 \times 8 + 4$ and $4 = 12 \times 0 + 4$
- $15 \equiv 0 \pmod{3}$ because $15 = 3 \times 5 + 0$ and $0 = 3 \times 0 + 0$
- $-8 \equiv 4 \pmod{6}$ because $-8 = 6 \times (-2) + 4$ and $4 = 6 \times 0 + 4$

Addition in Modular Arithmetic

Rule: If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$

Example:

Find
$$(17 + 23) \mod 5$$

$$17 \equiv 2 \pmod{5}$$
 and $23 \equiv 3 \pmod{5}$

So
$$(17 + 23) \equiv (2 + 3) \equiv 5 \equiv 0 \pmod{5}$$

Exercise 1 - Addition Practice:

a)
$$(13 + 18) \mod 7 =$$

b)
$$(25 + 34) \mod 8 =$$

c)
$$(19 + 27) \mod 6 =$$

d)
$$(45 + 38) \mod 9 =$$

General Rule: $(a + b) \mod n = ((a \mod n) + (b \mod n)) \mod n$

Multiplication in Modular Arithmetic

Rule: If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a \times c \equiv b \times d \pmod{n}$

Example:

Find (14 × 19) mod 6

 $14 \equiv 2 \pmod{6}$ and $19 \equiv 1 \pmod{6}$

So $(14 \times 19) \equiv (2 \times 1) \equiv 2 \pmod{6}$

Exercise 2 - Multiplication Practice:

a)
$$(15 \times 8) \mod 4 =$$

b)
$$(12 \times 7) \mod 5 =$$

c)
$$(23 \times 11) \mod 9 =$$

d)
$$(18 \times 25) \mod 7 =$$

General Rule: $(a \times b) \mod n = ((a \mod n) \times (b \mod n)) \mod n$

Clock Arithmetic Applications

Exercise 3 - Clock Problems:

a) If it's 8:00 AM now, what time will it be in 17 hours?
Answer: _____ (use mod 12)
b) If today is Tuesday (day 2), what day will it be in 100 days?
Answer: (use mod 7, where Sunday=0, Monday=1, etc.)

Basic Divisibility Rules Using Mods

Exercise 4 - Divisibility Practice:

- a) Is 2341 divisible by 3?
- b) Is 4567 divisible by 9?
- c) What is the remainder when 12345 is divided by 11?

Practice Problems

- 1. What is (123 + 89) mod 10?
- 2. What is (56 × 73) mod 9?
- 3. Is $37 \equiv 1 \pmod{6}$?
- 4. What is the smallest positive number x such that $x \equiv 4 \pmod{7}$ and $x \equiv 2 \pmod{5}$?
- 5. What is $(33 \times 44 \times 55) \mod 5$?
- 6. If it's 10:00 PM now, what time will it be in 50 hours? (Use mod 12)
- 7. If today is Thursday (day 4), what day will it be 365 days from now? (Use mod 7)
- 8. What is the remainder when 99999 is divided by 11?